نویسندگان
1 مربی، دانشکده کشاورزی سراوان، دانشگاه سیستان و بلوچستان، سیستان و بلوچستان
2 استادیار، گروه مکانیک ماشین های کشاورزی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان
3 دانشجوی دکترای مهندسی منابع آب، دانشگاه آزاد اسلامی واحد علوم و تحقیقات
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
In this study the wavelet neural network (WNN) and artificial neural network (ANN) were used to simulate barley breakage percentage in combine harvester. The models have been trained using the same data conditions. Air temperature, thresher cylinder speed, distance between thresher cylinder and concave (back and forth) and the percentage of barely moisture were as the input variables. The results showed that the wavelet network (WNN, RASP 1) with 90.2% correlation coefficient for barely breakage would be an appropriate substitute for artificial neural network with 88% correlation coefficient. The result of sensitivity analysis showed that all input variables had a significant effect on barely breakage. Speed of thresher cylinder had the most effect and the degree of air temperature had the least effect on barely breakage.
کلیدواژهها [English]